首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4882篇
  免费   756篇
  国内免费   474篇
化学   2066篇
晶体学   76篇
力学   1227篇
综合类   53篇
数学   729篇
物理学   1961篇
  2023年   56篇
  2022年   100篇
  2021年   125篇
  2020年   180篇
  2019年   292篇
  2018年   158篇
  2017年   191篇
  2016年   212篇
  2015年   170篇
  2014年   198篇
  2013年   369篇
  2012年   208篇
  2011年   270篇
  2010年   197篇
  2009年   286篇
  2008年   276篇
  2007年   295篇
  2006年   267篇
  2005年   231篇
  2004年   241篇
  2003年   212篇
  2002年   169篇
  2001年   160篇
  2000年   128篇
  1999年   128篇
  1998年   106篇
  1997年   90篇
  1996年   80篇
  1995年   93篇
  1994年   66篇
  1993年   51篇
  1992年   44篇
  1991年   34篇
  1990年   42篇
  1989年   39篇
  1988年   29篇
  1987年   16篇
  1986年   17篇
  1985年   23篇
  1984年   29篇
  1982年   32篇
  1981年   23篇
  1980年   16篇
  1979年   37篇
  1978年   15篇
  1977年   23篇
  1976年   14篇
  1975年   15篇
  1974年   16篇
  1973年   19篇
排序方式: 共有6112条查询结果,搜索用时 140 毫秒
1.
Recent developments in the study of the formation of self-assembled surfactant structures and multilayers at the solid-solution interface are presented. It covers a wide range of phenomena, but in this review the main focus is on the surface structures formed from dilute solution in the presence of electrolyte and in more concentrated solutions. Their formation under those conditions are set in the wider context of the more extensive observations of their occurrence in more complex polymer-surfactant mixtures. Although the sequential adsorption methods using layer-by-layer approaches are more well established for polyelectrolytes and their associated mixtures, the main emphasis is on the self-assembly. The opportunities to manipulate wetting properties and to generate enhanced wetting characteristics are discussed. The potential applications, modifying wetting behaviour, efficient near surface reservoir for enhanced and prolonged delivery of active components, and for the development of a range of smart functionalised surfaces are highlighted.  相似文献   
2.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   
3.
The electrochemical behavior of austenitic stainless steel (Type 304) in 3 M sulfuric acid with 3.5% recrystallized sodium chloride at specific concentrations of butan-1-ol was investigated with the aid of potentiodynamic polarization, open circuit measurement and weight loss technique. Butan-1-ol effectively inhibited the steel corrosion with a maximum inhibition efficiency of 78.7% from weight-loss analysis and 80.9% from potentiodynamic polarization test at highest concentration studied. Adsorption of the compound obeyed the Freundlich isotherm. Thermodynamic calculations reveal physiochemical interactions and spontaneous adsorption mechanism. Surface characterizations showed the absence of corrosion products and topographic modifications of the steel. Statistical analysis depicts the overwhelming influence and statistical significance of inhibitor concentration on the inhibition performance.  相似文献   
4.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
5.
The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.  相似文献   
6.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
7.
The radius of spatial analyticity for solutions of the KdV equation is studied. It is shown that the analyticity radius does not decay faster than t?1/4 as time t goes to infinity. This improves the works of Selberg and da Silva (2017) [30] and Tesfahun (2017) [34]. Our strategy mainly relies on a higher order almost conservation law in Gevrey spaces, which is inspired by the I-method.  相似文献   
8.
A new finite‐volume flow solver based on the hybrid Cartesian immersed boundary (IB) framework is developed for the solution of high‐speed inviscid compressible flows. The IB method adopts a sharp‐interface approach, wherein the boundary conditions are enforced on the body geometry itself. A key component of the present solver is a novel reconstruction approach, in conjunction with inverse distance weighting, to compute the solutions in the vicinity of the solid‐fluid interface. We show that proposed reconstruction leads to second‐order spatial accuracy while also ensuring that the discrete conservation errors diminish linearly with grid refinement. Investigations of supersonic and hypersonic inviscid flows over different geometries are carried out for an extensive validation of the proposed flow solver. Studies on cylinder lift‐off and shape optimisation in supersonic flows further demonstrate the efficacy of the flow solver for computations with moving and shape‐changing geometries. These studies conclusively highlight the capability of the proposed IB methodology as a promising alternative for robust and accurate computations of compressible fluid flows on nonconformal Cartesian meshes.  相似文献   
9.
The heat equation is solved by using a finite volume discretization in a domain that consists of a two-dimensional central node and several one-dimensional outgoing branches. Several interface connection options to match the submodels set on the node and on the branches, with or without continuity, are looked at. For each of them, a monolithic scheme is defined, and existence and uniqueness of the solution is proved. New schemes are deduced, which are obtained through domain decomposition methods in the form of interface systems, with one or two unknowns per interface. A comparative systematic study is carried out from an algebraic and numerical point of view according to the interface conditions: Dirichlet, Neumann, or Robin. An efficient diagonal preconditioning is proposed.  相似文献   
10.
相干anti-Stokes Raman散射(coherent anti-Stokes Raman scattering,CARS)技术作为一种非接触测量手段,已广泛应用于多种发动机模型燃烧室温度测量及地面试验.然而,目前的工作主要集中在稳态燃烧场温度的测量,缺乏用高分辨率的单脉冲来测量瞬变的燃烧火焰温度及组分浓度的研究.基于CARS理论,结合多参数拟合算法,开发了基于MATLAB的CARS光谱计算和拟合程序CARSCF;利用McKenna平面火焰炉在不同工况下进行了温度测量,并与DLR测量结果进行对比,结果显示开发的CARSCF具有较高的测量重复性和准确性;最后将CARS技术应用于测量超燃冲压发动机点火过程中的温度测量,获取了点火过程中的温度.结果显示,在来流Mach数为3的条件下,H2/air点火过程中温度呈现急剧上升然后缓慢下降,而CARS信号则呈现急剧上升然后急剧下降随后又缓慢上升的趋势,并且在点火过程中最高温度为1 511 K.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号